Experience

Teaching Taiwanese since 2005 | FREE 30-minute trial classes available!

Bernard English

Bernard English
FREE 30-minute trial classes available!

Online English Tutor/Teacher

My photo
Native Speaker of American English Conversation practice. Chatting or in-depth discussion of news articles. TOEFL-IELTS practice / CV, SOP, journal paper, essay revision 英語家教 彈性排課, 免通勤, 托福, 職場英文, 履歷/論文修改…等。 請看我的學生推薦信。

Search This Blog

email: bernard.english@gmail.com

website: https://sites.google.com/site/taipeibm/
FREE 30-minute trial classes available!

Thursday, December 2, 2010

Hydrogen Hypothesis FROM Wikipedia

I find it fascinating because, if true, then a momentous step towards multicellular life was taken in a definitely non-Darwinian fashion.
"The hydrogen hypothesis is a model proposed by William F. Martin and Miklós Müller in 1998 that describes a possible way in which the mitochondrion arose as an endosymbiont within a prokaryote (an archaea), giving rise to a symbiotic association of two cells from which the first eukaryotic cell could have arisen.
According to the hydrogen hypothesis:
The host that acquired the mitochondrion was a prokaryote, a hydrogen-dependent archaea, possibly similar in physiology to a modern methanogenic archaea which uses hydrogen and carbon dioxide to produce methane;
The future mitochondrion was a facultatively anaerobic eubacterium which produced hydrogen and carbon dioxide as byproducts of anaerobic respiration;
A symbiotic relationship between the two started, based on the host's hydrogen dependence (anaerobic syntrophy).
The hypothesis differs from many alternative views within the endosymbiotic theory framework, which suggest that the first eukaryotic cells evolved a nucleus but lacked mitochondria, the latter arising as a eukaryote engulfed a primitive bacterium that eventually became the mitochondrion.
The hypothesis attaches evolutionary significance to hydrogenosomes and provides a rationale for their common ancestry with mitochondria. Hydrogenosomes are anaerobic mitochondria that produce ATP by, as a rule, converting pyruvate into hydrogen, carbon dioxide and acetate. Examples from modern biology are known where methanogens cluster around hydrogenosomes within eukaryotic cells. Most theories within the endosymbiotic theory framework do not address the common ancestry of mitochondria and hydrogenosomes.
The hypothesis provides a straightforward explanation for the observation that eukaryotes are genetic chimeras with genes of archaeal and eubacterial ancestry. Furthermore, it would imply that archaea and eukarya split after the modern groups of archaea appeared. Most theories within the endosymbiotic theory framework predict that some eukaryotes never possessed mitochondria. The hydrogen hypothesis predicts that no primitively mitochondrion-lacking eukaryotes ever existed. In the 10 years following the publication of the hydrogen hypothesis, this specific prediction has been tested many times and found to be in agreement with observation."

No comments:

Post a Comment

Followers